

SAN PABLO AVENUE BRIDGE REPLACEMENT PROJECT

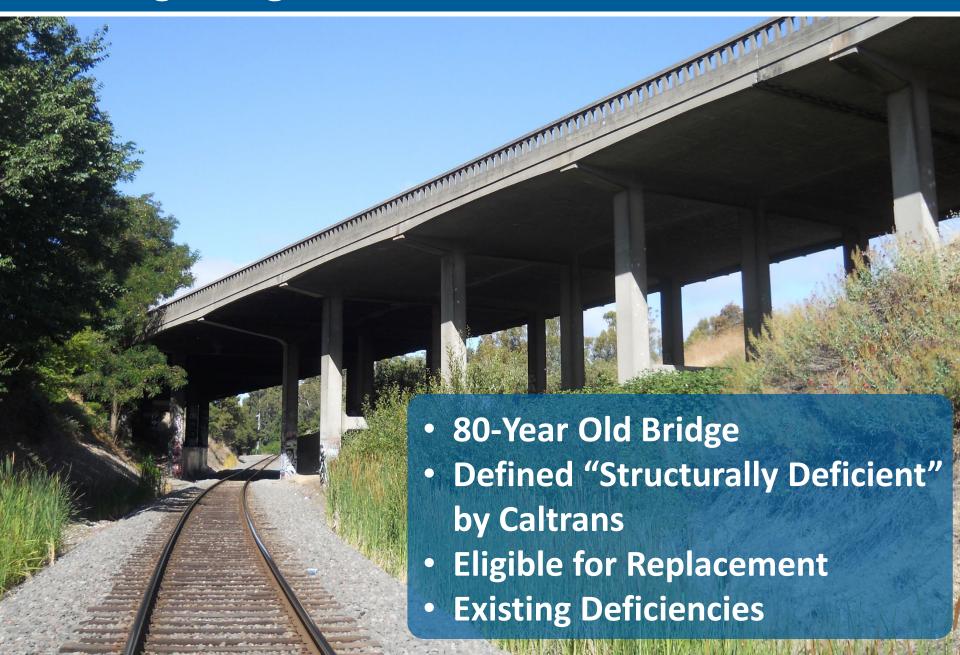
ntroduction

Tamara Miller, City of Pinole

Matt Todd, Gray-Bowen-Scott

Jason Jurrens, Quincy Engineering

Project Goal


Maintain four vehicular lanes
Bike/pedestrian facilities to current standards

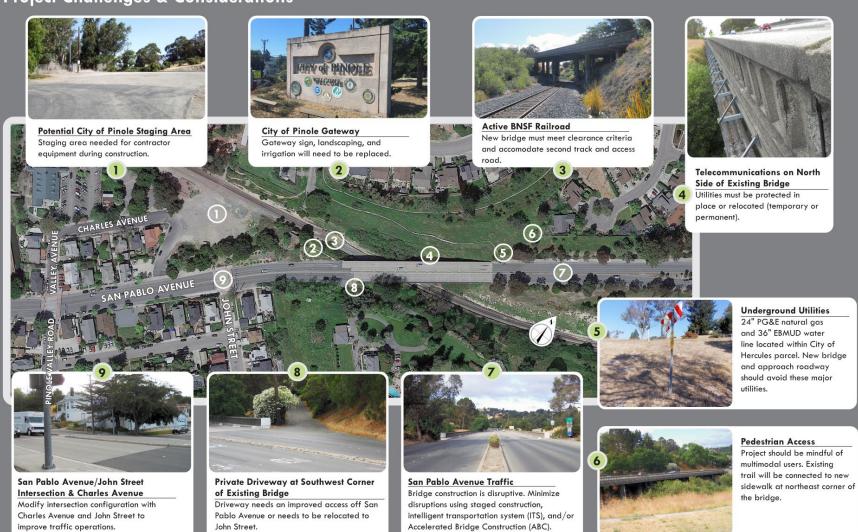
Existing Bridge

History

- Project Study Report Completed in 2015
 - ✓ Documented the "structural deficiencies" of the bridge
- Highway Bridge Program (HBP) Funding Approved
 - ✓ Safety program that provides federal funds to local agencies to replace and rehabilitate deficient locally owned public highway bridges
- Matching Fund Sources Secured Through CCTA and WCCTAC

Status

- Funding Package Includes Federal Funds
 - ✓ Requires formal consultant procurements
 - ✓ Requires NEPA clearance
- Quincy Engineering Team Selected to Develop the Project
- Started Environmental and Preliminary Engineering Work in Spring 2020
 - ✓ Working on initial tasks that will be the basis for starting the environmental studies
 - ✓ Agreements with railroad for entry and review

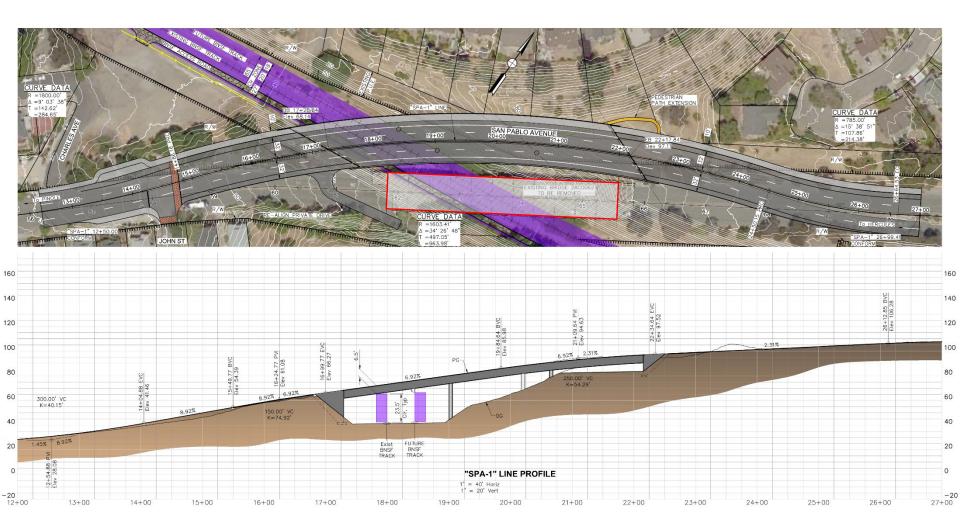


Project Considerations & Challenges

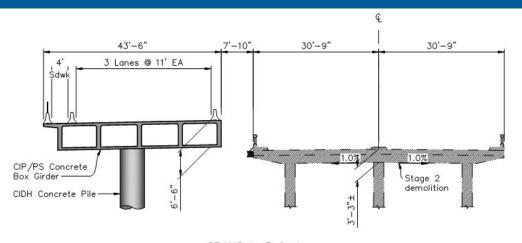
Project Challenges & Considerations

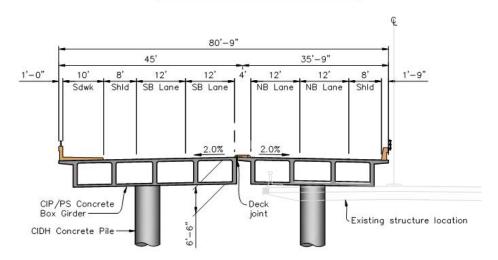
Project Location

Preliminary Alignment



Preliminary Alignment





Typical Construction Staging

STAGING TYPICAL SECTION

SPANS 1, 3 & 4

TYPICAL SECTION

Bridge Types

ALT.	# OF TRACKS	# ACCESS ROAD	S.S. TYPE	# OF CONST. STAGES	SKEW	S.S. Depth (ft.)	TEMP. VERT. CLR. (ft.)	IMPACT TO UTILITY CORRIDOR	IMPACT TO R/W	RDWY. SLOPE	COST	COMMENTS
1	2	1	Steel Girder	1	High	6	N/A	All to move	Biggest	Med. Raise	Very High	Highly skewed alt.
2	2	1	Steel Girder	2	High	6	N/A	Partial	Minor	Med. Raise	Very High	Highly skewed alt.
3	2	1	Steel or PC Girder	2	None	9	N/A	Partial	Minor	Steepest	Very High	Girders probably to long to erect
4	2	1	Steel Thru Girder	1	High	3	N/A	All to move	Biggest	Minor Raise	Extremely High	Due to rdwy. curve, bridge needs to be extra wide
5	2	1	Steel Thru Girder	2	High	3	N/A	Partial	Minor	Minor raise	Most Expensive	Due to rdwy. curve, bridge needs to be extra wide
6	1	0	CIP Slab	2	None	2.5	21.5	Partial	Minor	Minor Raise	Least Expensive	Difficult to get BNSF approval
7	2	1	CIP/PC Concrete	2	None	6.5	N/A	Partial	Minor	Med. Raise	High	Likely Bridge Type
8	2	1	Varies	1 or 2	High	Varies	N/A	Varies	Varies	Varies	Varies	Tall abut. eliminates span. Different str. types can be used

Key Considerations During Construction

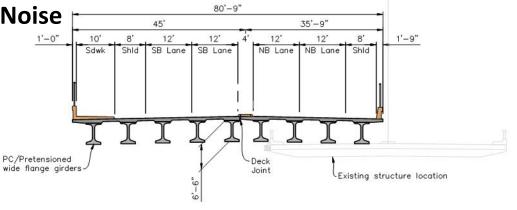
Maintaining Traffic

- Signal modifications
- Pedestrian and bicycle access
- No disruption to bus service
- Maintain driveway access

43'-6" 7'-10" 30'-9" 30'-9" 30'-9" 1.03 Stage 2 demolition

Timing of Utility Relocations (if needed)

Temporary relocation of lines on bridge


STAGING TYPICAL SECTION

Sensitive Receptors to Construction Noise

Strict work windows

Staging Area

Use of BNSF and City parcels

SPAN 2

TYPICAL SECTION

Traffic

- Traffic Volumes Will Not Be Collected Due to COVID-Related Travel changes
- Historical Traffic Counts Will be Utilized
- Reliever Route for I-80
- Determine Traffic Impacts During Construction
 - Five adjacent intersections to be evaluated
 - Four in Pinole
 - One in Hercules
 - Includes possible detours using adjacent roadway segments

Potential Traffic Staging

Two-Lanes (One Lane in Each Direction)

- Provide information to regional traffic to encourage alternate route (I-80)
- Maintains local traffic by encouraging regional traffic to stay on I-80

Two Lanes with Temporary Signals at Each End (Two Lanes in Each Direction)

- Allow peak direction to have additional cycle time
- Additional delay for local traffic to provide for less impact to regional traffic

Three Lanes with Reversible Lane to Provide Two Lanes in Peak Direction (Outside the Box Alternative)

Maintains local traffic and provides for regional traffic

Railroad Challenges & Considerations

Environmental Considerations – Bridge Construction

Cultural Resources

- Subsurface disturbance has potential to expose buried resources
- Tribal notification/consultation

Hydrology

- Proximity to Pinole Creek
- Stormwater Treatment

Noise

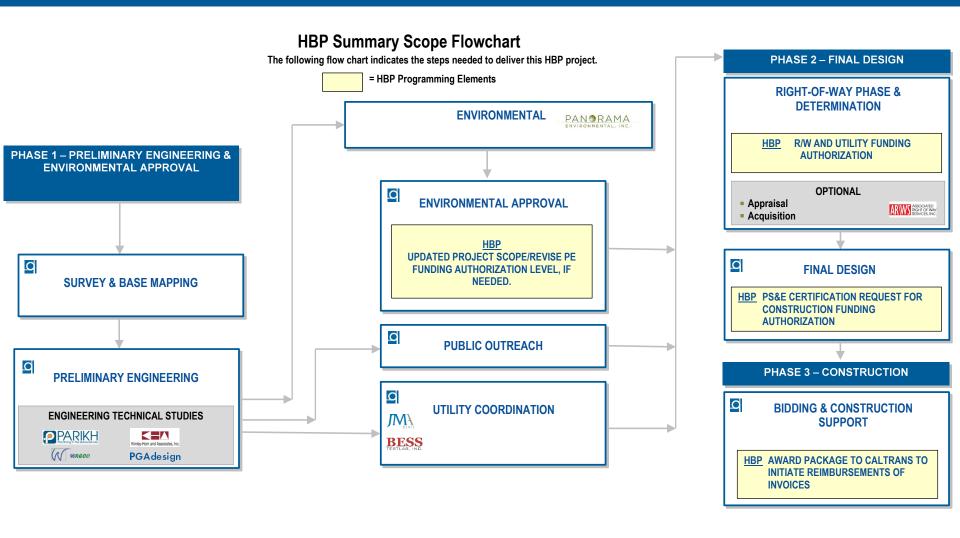
- Proximity of residences to the new bridge
- Noise from demolition

Traffic

- Use of existing bridge during construction
- Delays and slower speeds due to staged construction

Additional Issues & Considerations

- Complete Streets
 - Bicycle, Pedestrians, Vehicles
- Green Infrastructure
- ADA Compliance
- Aesthetics
- Outreach/Communications
- Funding & Value Engineering
- Landscape Architecture



HBP Process

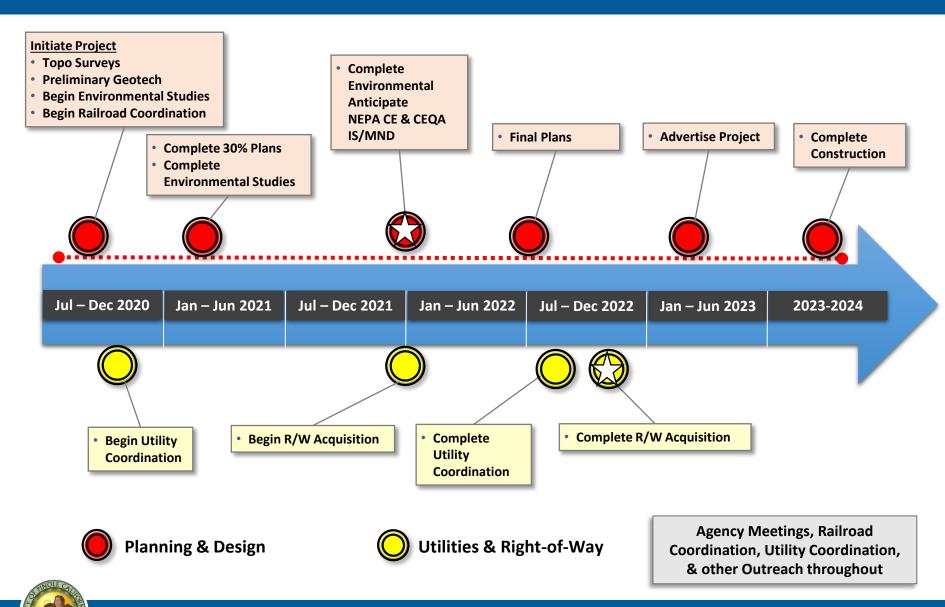
Funding

- Caltrans Highway Bridge Program Funding
 - ✓ \$15.78M
 - ✓ Requires a funding match of a minimum of 11.5%
- WCCTAC
 - √ \$1.6M Subregional Transportation Mitigation Program (STMP)
- CCTA
 - √ \$387,000 Measure J TLC

Funding

Project Cost Estimate from Initial PSR - \$17 M - Since 2015:

- ✓ High speed rail project development basing new assumptions on these project discussions
- ✓ Through initial contact with railroad, assuming clearance for 2 tracks and access road
 - Initial assumption required doubling horizontal clearance, new assumption increases more than 400%
- ✓ Cascading effect.....
 larger clearances longer structure deeper structures → More \$
- ✓ Higher construction cost/Escalation over 150% increase in cost per sq foot


Updated Project Cost Estimate - \$38 M

- ✓ Complete preliminary engineering work (i.e. 30% design) and further refine cost estimate
 - Pursue additional federal HBP funds
 - Continue to work with partners to identify matching funds (11.5%)

Schedule

